Welcome to my webpage
I am a Sherman Fairchild postdoctoral fellow in the Walter Burke Institute for Theoretical Physics at Caltech, supervised by John Preskill.
I received my Ph.D. in Quantum Science and Engineering from the University of Chicago in 2024, advised by Liang Jiang, and obtained my B.S. in Physics from Nanjing University in 2019.
My research focuses on quantum error correction and fault-tolerant quantum information science, and their interplay with physics and computer science. I am driven by a central question: How can new quantum codes, logical operations, and architectures enable error-corrected quantum machines with hundreds or even thousands of logical qubits in the near term, and how might such reliable quantum machines, in turn, become unprecedented instruments for new scientific discovery?
High-rate quantum codes and logical operations
[1]. Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable Atom Arrays.
Q. X., J. Pablo Bonilla Ataides, Christopher A. Pattison, Nithin Raveendran, Dolev Bluvstein, Jonathan Wurtz, Bane Vasic, Mikhail D. Lukin, Liang Jiang, and Hengyun Zhou.
Nat. Phys. (2024). [QIP 2024]. [QEC 23].[Article by Quanta Magzine].
[2]. Fast and Parallelizable Logical Computation with Homological Product Codes.
Q. X., Hengyun Zhou, Guo Zheng, Dolev Bluvstein, J. Pablo Bonilla Ataides, Mikhail D. Lukin, Liang Jiang.
Phys. Rev. X (2025). [QIP 2025]. [APS Global Physics Summit (invited)].
[3]. Batched high-rate logical operations for quantum LDPC codes.
Q. X., Hengyun Zhou, Dolev Bluvstein, Madelyn Cain, Marcin Kalinowski, John Preskill, Mikhail D. Lukin, and Nishad Maskara.
arXiv (2025). [QIP 2026].
[4]. Transversal dimension jump for product qLDPC codes.
Christine Li, John Preskill, Q. X..
arXiv (2025). [Unitary foundation talks].
[5]. High-Rate Surgery: towards constant-overhead logical operations.
Guo Zheng, Liang Jiang, Q. X..
arXiv (2025).
Hardware-efficient fault tolerance with bosonic system and quantum optics
[1]. Fault-Tolerant Operation of Bosonic Qubits with Discrete-Variable Ancillae.
Q. X., Pei Zeng, Daohong Xu, and Liang Jiang.
Phys. Rev. X (2024). [QEC 23].
[2]. Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits.
Q. X., Guo Zheng, Yu-Xin Wang, Peter Zoller, Aashish A. Clerk, and Liang Jiang.
npj Quantum Inf (2023).
[3]. Construction of Bias-preserving Operations for Pair-cat Code.
Ming Yuan, Q. X., and Liang Jiang.
Phys. Rev. A (2022).
[4]. Quantum Capacity and Codes for the Bosonic Loss-Dephasing Channel.
Peter Leviant, Q. X., Liang Jiang, and Serge Rosenblum.
Quantum (2022).
[5]. Stabilizing a Bosonic Qubit Using Colored Dissipation.
Harald Putterman, Joseph Iverson, Q. X., Liang Jiang, Oskar Painter, Fernando G.S.L. Brando, and Kyungjoo Noh.
Phys. Rev. Lett. (2022). [US Patent].
[6]. Engineering Kerr-Cat Qubits for Hardware-Efficient Quantum Error Correction.
Q. X., Harald Putterman, Joseph Iverson, Kyungjoo Noh, Oskar Painter, Fernando G.S.L. Brando, and Liang Jiang.
Quantum Computing, Communication, and Simulation II. Vol. 12015. SPIE (2022).
[7]. Engineering Fast Bias-Preserving Gates on Stabilized Cat Qubits.
Q. X., Joseph Iverson, Fernando G.S.L. Brando, and Liang Jiang.
Phys. Rev. Research (2022). [US Patent].
[8]. Quantum Repeaters Based on Concatenated Bosonic and Discrete-Variable Quantum Codes.
Filip Rozpędek, Kyungjoo Noh, Q. X., Saikat Guha, and Liang Jiang.
npj Quantum Information (2021).
Topological codes
Distributed Quantum Error Correction for Chip-Level Catastrophic Errors.
[1]. Q. X., Alireza Seif, Haoxiong Yan, Nam Mannucci, Bernard Ousmane Sane, Rodney Van Meter, Andrew N. Cleland, and Liang Jiang.\
Phys. Rev. Lett. (2022).
Tailored XZZX Codes for Biased Noise.
[2]. Q. X., Nam Mannucci, Alireza Seif, Aleksander Kubica, Steven T. Flammia, and Liang Jiang.
Phys. Rev. Research (2022).
